# With High Frequency Acoustic Wave **ACOUSTIC TOMOGRAPHY** (HIGH-RESOLUTION GEOLOGICAL SURVEY)

"Visualize!" the underground structure Useful method in the urban area

New Technology Information System, accredited by Japanese Ministry of Land, Infrastructure, Transport and Tourism (No.KT-080011-A)

JFE Civil Engineering and Construction Corporation

Visual-Eye

# OUTLINE

A transducer and arrayed receivers are installed in the two boreholes respectively. Pseudo Random Binary Sequence (PRBS) Wave is utilized and then the arrival time and also the sound pressure level are obtained in this system. Therefore the velocity and the attenuation images are produced simultaneously. The velocity represents the hardness and kinds of the ground, ant the attenuation represents the existence of internal fluid, gas etc and the grain size of the ground.





#### RECEIVER

- · Piezo type
- OD=33mm,Weight=11kg
- · 24channels@1m-interval
- Frequency:1Hz ~ 20kHz





Quite difficult to gather the clear data by





**(1) DATA LOGGER** Input: 24ch, Resolution: 14bit

#### **(2) SIGNAL FILTER**

- · Input: 24ch, Gain: 100times
- · Band Pass Filter
- (200Hz to 60kHz)
- · AC 100V, Weight: 7kg

#### **③ POWER AMPLIFIER**

- Output: 120V (<20kHz)</li>
- Frequency: 20Hz ~ 20kHz
- AC 100V, 60W, Weight: 9kg

#### Port of Manila in Philippines Past Result

A bearing layer of the piles was different by 8m between two boring results with the distance of 50m. Acoustic tomography was conducted to investigate the bearing layer in between two borings and then successfully minimize the loss of steel pipe pile materials and the construction period.



Two bearing layers were found by soil boring test at the new warehouse construction site. Should the minimum thickness of the first bearing layer be kept all over the construction area, Plan A could be applied and it would minimize the construction cost. The thickness of the sand and gravel layer was precisely confirmed by Acoustic Tomography then the Plan A was selected.









constructed on schedule without any adjustment of piles or redo-works.

Underground structure estimated only from boring logs became simple, and difficult to reflect the actual complicated underground structure. Thanks to Acoustic Tomography conducted, the pile length was precisely designed. As a result, the multi-story-car-park was

#### Detecting a thin crack in Granite Experiment

One granite block is put on another granite block with 0.5mm spacer which was filled by water. Tomography was conducted between two holes which was drilled in the granite blocks.





## No crack is indicated in velocity image Crack is indicated as high attenuation area in attenuation image

Granite in Singapore Past Result



Weathering grades of Granite are indicated in attenuation image



Detecting an obstacle Experiment

## Model experiment with a wood block imitating an obstacle

### Buried Drain Pipe Past Result

# Drain pipe exists at highly attenuated area

#### Oil Exploration Past Result



Visualize cracks and openings inside of concrete structure

Detect inside cracks or openings as small as some cm without any influence of re-bars. Possible to apply for the inspection of the pier with traffic due to Noise Proof.





Field investigation at Hibiya Park, Tokyo



A Plane Tree : Diameter 62cm

Tree Friendly and User Friendly Real-time analysis Extensive

#### Non-destructive Investigation Other Application





DR. WOODS Other Application



### Work Record

| Year | Purpose                                     | Location      | Distance(m) | Depth(m) |
|------|---------------------------------------------|---------------|-------------|----------|
| 2009 | Investigation of bearing layer              | Kyushu        | 80          | 30       |
| 2009 | Investigation of bearing layer              | Okayama       | 50          | 40       |
| 2009 | Detecting the buried obstacle               | East Japan    | 40          | 40       |
| 2009 | Detecting the buried obstacle               | East Japan    | 40          | 30       |
| 2009 | Monitoring the soil improvement area        | East Japan    | 20          | 20       |
| 2009 | Investigation of fracture in the rock       | Europa        | 4           | 20       |
| 2009 | Detecting the weather area at tunnel wall   | Hokkaido      | 3           | 20       |
| 2009 | Investigation of fracture in the rock       | East Japan    | 1           | 400      |
| 2008 | Detecting the loose area under the basement | Central Japan | 10          | 10       |
| 2008 | Monitoring the soil improvement area        | West Japan    | 10          | 10       |
| 2008 | - · · ·                                     |               | 50          | 30       |
|      | Investigation of bearing layer              | West Japan    | 2           |          |
| 2008 | Detecting the weather area at tunnel wall   | Hokkaido      |             | 7        |
| 2008 | Investigation of bearing layer              | West Japan    | 60          | 30       |
| 2007 | Investigation of fracture in the rock       | West Japan    | 80          | 50       |
| 2007 | Monitoring the soil improvement area        | East Japan    | 2           | 2        |
| 2007 | Investigation of fracture in the rock       | East Japan    | 1           | 1        |
| 2006 | Investigation of bearing layer              | East Japan    | 30          | 60       |
| 2006 | Monitoring the soil improvement area        | West Japan    | 20          | 20       |
| 2006 | Investigation of bearing layer              | West Japan    | 10          | 10       |
| 2006 | Detecting the buried obstacle               | East Japan    | 2           | 2        |
| 2005 | Investigation of fracture in the rock       | Europa        | 300         | 500      |
| 2005 | Investigation of bearing layer              | Aichi         | 70          | 50       |
| 2005 | Investigation of bearing layer              | Osaka         | 70          | 60       |
| 2005 | Investigation of bearing layer              | West Japan    | 40          | 70       |
| 2005 | Detecting the cave in the ground            | Fukushima     | 20          | 10       |
| 2005 | Monitoring the soil improvement area        | Ibaraki       | 2           | 2        |
| 2005 | Monitoring the soil improvement area        | East Japan    | 2           | 2        |
| 2004 | Investigation of fracture in the rock       | Europa        | 100         | 100      |
| 2003 | Investigation of bearing layer              | Chiba         | 70          | 50       |
| 2003 | Investigation of bearing layer              | Chiba         | 70          | 50       |
| 2003 | Investigation of bearing layer              | Saitama       | 70          | 50       |
| 2003 | Investigation of fracture in the rock       | West Japan    | 30          | 30       |
| 2003 | Investigation of fracture in the rock       | Europa        | 20          | 10       |
| 2003 | Monitoring the soil improvement area        | Hyogo         | 10          | 10       |
| 2003 | Investigation of fracture in the rock       | Europa        | 2           | 2        |
| 2003 | Investigation of bearing layer              | Chiba         | 120         | 60       |
| 2002 | Investigation of bearing layer              | Chiba         | 70          | 50       |
|      | · · · ·                                     |               |             |          |
| 2002 | Investigation of bearing layer              | Nigata        | 50          | 50       |
| 2002 | Detecting the cave in the ground            | Gifu          | 35          | 50       |
| 2002 | Investigation of fracture in the rock       | East Japan    | 2           | 2        |
| 2002 | Liquifaction experiment                     | Ibaraki       | 2           | 2        |
| 2002 | Investigation of fracture in the rock       | Europa        | 2           | 2        |
| 2002 | Investigation of bearing layer              | North Japan   | 1           | 10       |
| 2001 | Investigation of bearing layer              | Tokyo         | 50          | 50       |
| 2001 | Investigation of bearing layer              | Ehime         | 25          | 30       |
| 2001 | Detecting loose sand area in the ground     | East Japan    | 15          | 50       |
| 2001 | Liquifaction experiment                     | Ibaraki       | 2           | 2        |
| 2000 | Investigation of fracture in the rock       | Tochigi       | 50          | 100      |
| 2000 | Liquifaction experiment                     | Ibaraki       | 2           | 2        |
| 1999 | Investigation of fracture in the rock       | Central Japan | 50          | 150      |
| 1999 | Investigation of bearing layer              | North Japan   | 40          | 150      |
| 1997 | Oil exploration                             | Trinidad      | 150         | 700      |
| 1996 | Investigation of bearing layer              | Phillipines   | 50          | 50       |
| 1994 | Oil exploration                             | USA           | 400         | 100      |
| 1994 | Monitoring the reclamation                  | West Japan    | 50          | 30       |
| 1993 | Goundwater exploration                      | USA           | 50          | 50       |
|      |                                             | AND DECK 1    |             | 00       |

## **Typical Application**





Investigation in Heavy Traffic Area



Soil Investigation at Reclaimed Land





Soil Investigation for Building Foundation

### CONTACT



**JFE Civil Engineering and Construction Corporation Acoustic Tomography Promotion Team** (J. Sakakibara, K. Ishihara)

2-17-4 Kuramae, Taito-ku, Tokyo, 111-0051 Japan TEL: 03-3864-2982 FAX: 03-3864-7319 E-mail : ontomo@jfe-civil.com http://www.jfe-civil.com/doboku/ontomo/



Oil Exploration at GL-1,000m



EDZ Detection



Oil Exploration – Akita, Japan

**Cavity Investigation** 



Underground Water Survey